edexcel 쁓

Mark Scheme (Results)

Summer 2016

Pearson Edexcel

International Advanced Level
in Chemistry (WCH01) Paper 01
The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 46662_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

WCH01 June 2016 Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	B		(1)
Question Number	Correct Answer	Reject	Mark
2	C		(1)
Question Number	Correct Answer	Reject	Mark
3	A		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{4}$	A		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{5}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{6}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{7}$	D		$\mathbf{(1)}$

Question	Correct Answer	Reject	Mark
Number			
$\mathbf{8 a}$	D		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 b}$	D		

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 c}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 d}$	C		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{8 e}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{9}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 0}$	B		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 1}$	D		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 2}$	C		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 3}$	D		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 4}$	A		(1)

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 5}$	B		$\mathbf{(1)}$

Question Number	Correct Answer	Reject	Mark
$\mathbf{1 6}$	B		(1)

(Total for Section $\mathbf{A}=\mathbf{2 0}$ marks)

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (a)}$	Atoms of the same element / atomic number / proton number and different mass number / neutron number / nucleon number	Molecule for atom	Atomic mass number
	ALLOW Elements / they / isotopes have the same atomic number ...etc	Atomic mass for mass number	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i)}$	High energy/fast moving/high speed electrons hit atoms/molecules/elements/sample (and knock electrons out.)	ALLOW (Use) an electron gun/beam/stream Bombard with electrons IGNORE References to ionizing / forming (positive) ions Just an equation, e.g., $\mathrm{M}(\mathrm{g}) \rightarrow \mathrm{M}^{+}(\mathrm{g})$ +e	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i)}$	$\mathrm{M}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{M}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$ ALLOW $\mathrm{M}(\mathrm{g}) \rightarrow \mathrm{M}^{+}(\mathrm{g})+\mathrm{e}^{-}$ $\mathrm{M}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{M}^{+}(\mathrm{g})$		(1)
	ALLOW Use of $\mathrm{Mg}^{+}(\mathrm{g})$ for $\mathrm{M}^{+}(\mathrm{g})$		
	IGNORE omission of minus sign on electron state symbol on electron Rewritten $\mathrm{M}(\mathrm{g})$ on LHS Leading '1' before any charges e.g. $\mathrm{M}(\mathrm{g})^{1+}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (b) (i i i)}$	(With an) electric field / (negatively) charged plates (with slits in them)	(Electro)magnetic field Positively charged plates Charged slits	(1)
	ALLOW Oppositely/alternatively charged plates	IGNORE Electric plates	

Question Number	Acceptable Answers	Reject	Mark
17(b)(iv)	Curved path showing lighter ion deflected more	Straight line	(1)
		Lines originating from the magnet	
		Lines deflected before passing	
	ALLOW dotted line additional parallel path entering the magnet with correct deflection	through the magnet	
	lines that do not reach but would extrapolate to detector on left of original beam	Lines which would not hit the detector	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (c)}$	$\frac{((28 \times 92.17)+(29 \times 4.71)+}{(30 \times 3.12))} \quad(1)$ $(=28.1095)$ 100 $=\mathbf{2 8 . 1 1}$ (1) Final answer without working scores (2) IGNORE units Answers not to 4sf (second mark)	(2)	

Question Number	Acceptable Answers	Reject	Mark
17(d)	MP2 cannot be awarded without any attempt to do a calculation for MP1 MP1 $(6 \times 12+12 \times 1.0079)=84.0948$ OR $(5 \times 12+8 \times 1.0079+15.9949)=$ 84.0581 (1) MP2 So mass matches for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O} /$ doesn't match for $\mathrm{C}_{6} \mathrm{H}_{12}$ (1) OR MP1 Mass of $12 \mathrm{H}=12.0948$ (1) MP2 Remaining mass $=71.9633$, so not exactly equal to 6C (1) OR MP1 Mass of $\mathrm{H}_{8} \mathrm{O}=24.0581$ (1) MP2 Remaining mass $=60.0000$ so exactly equal to 5C (1) MP3 Assumption: (one atom of) $\mathrm{C}=12(.0000) /$ has mass (exactly) 12 ALLOW Other isotopes of H and/or O are not present (1) IGNORE Any units in calculations	Just use of C = 12 without indicating as an assumption	(3)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7 (e)}$	Small atomic radius / small atom	Small molecule	(1)
	ALLOW Diffuses easily Not (significantly) present in air/ low density / less dense than air Non-toxic	IGNORE Low mass / lighter than air / light(weight) / references to inertness or non-flammability / availability / gas at room temperature / monatomic / no isotopes / answers relating to cost	(Total for question 17 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	$\left(1 s^{2}\right) 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$		(1)
	ALLOW Upper case, subscripts, P orbitals divided into x, y, z eg: $2 s^{2} 2 p_{x}{ }^{2} 2 p_{y}{ }^{2} 2 p_{z}^{2} 3 s^{2} 3 p_{x}{ }^{1}$		
	IGNORE $1 s^{2}$ if written again		

Question Number	Acceptable Answers		Reject	Mark
$\mathbf{1 8 (b)}$	protons	13		(1)
	neutrons	14		
	electrons	10		
	All three numbers needed for mark IGNORE any working out in table			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (c) (i i)}$	$\mathrm{Al}^{+}(\mathrm{g}) \rightarrow \mathrm{Al}^{2+}(\mathrm{g})+\mathrm{e}^{-}$ OR $\mathrm{Al}^{+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Al}^{2+}(\mathrm{g})$	(2)	
	MP1 Balanced equation (1)	MP2 (g) symbols This is dependent on the equation involving aluminium even if electrons/charges are wrong (1)	
	NOTE If correct equation for a second ionization using the wrong symbol is given with correct state symbols allow (1) max		
	IGNORE lack of minus sign on electron / any state symbols for electron		

Question Number	Acceptable Answers	Reject	Mark
*18(c)(iii)	MP1 Second electron is closer (to nucleus) / electron is removed from a positive ion / $1+$ ion is smaller than atom ALLOW More protons than electrons (in ion) Effective nuclear charge greater (in ion) (1) MP2 So greater attraction between electron and nucleus/protons OR More energy required to overcome attraction between electron and nucleus OR Less repulsion between electrons (1) IGNORE References to high charge-density in 1+ion References to shielding / last electron / paired electrons / electron shell stability	Just 'more energy required to remove electron' / 'harder to remove electron' NOTE "Second I.E. loses 2 electrons" scores (0) overall $1+$ ion has more protons than atom - scores (0) overall	(2)

Question Number	Acceptable Answers	Reject	Mark
*18(c)(iv)	MP1 for similarity between first and second electrons lost; $1^{\text {st }}$ and $2^{\text {nd }}$ (electrons are removed) from the same/3rd shell OR First (electron lost from) 3p (subshell/orbital) and second (electron lost from) 3s (subshell/orbital) (1) MP2 for difference between third and fourth electrons lost; Third (electron lost from) 3s (subshell/orbital) and fourth (electron lost from) $\mathbf{2 p}$ (subshell/orbital) OR (compared with the $3^{\text {rd }}$ electron) the $4^{\text {th }}$ electron is removed from a shell closer to the nucleus / from a new/lower/different shell / from a shell with less shielding (1) If no other mark awarded, allow (1) for: three electrons in the 3rd shell of Al and the fourth electron is removed from 2nd shell IGNORE References to charges on ion	$1^{\text {st }}$ and $2^{\text {nd }}$ from same subshell	(2)

Question	Acceptable Answers	Reject	Mark
18(d)(i)	Regular lattice of + OR 3+ (can be written in ions or labelled) ALLOW Ions which touch (1) Delocalised electrons/sea of electrons including some between ions, shown and labelled	Protons / nucleus / atoms	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (d) (i i)}$	(Mg) lower (melting temperature) because (no mark for this alone) and any two from:	"Mg has a higher melting point" scores (0) overall	(2)
	(Mg) ion charge is less / (Mg) ion (radius) is larger / (Mg) ion charge density is less / (any mention of) Mg² and Al ${ }^{3+} \quad$ (1)	Atomic radius (of Mg) is larger	
	(Mg) fewer delocalised/free electrons / smaller sea of electrons / one less electron donated		
(1)	(Mg) weaker (forces of) attraction between (+ve) ions and (delocalised/free electrons / sea of electrons) / (Mg) ions are held less tightly to the sea of electrons / metallic bond is weaker (1)	References to ionic bonds / covalent bonds / intermolecular forces score (0) overall	

Question Number	Acceptable Answers Reject	Mark	
$\mathbf{1 8 (d) (i i i)}$	$\left[\begin{array}{l}\text { First mark } \\ \text { Correct dot and cross diagrams with 2+ } \\ \text { on } \mathrm{Mg} \text { and }-/ 1-/-1 \text { charge on (both if } \\ \text { drawn) Cl }\end{array}\right.$	Covalent bonding - scores (0) overall	(2)
	ALLOW No electrons or 8 electrons on outer shell of Mg Dots or crosses or other valid symbols for electrons Paired or unpaired electrons Diagrams without brackets Second mark Ratio of one Mg to two Cl (ions) (1) ALLOW Number of Cl shown as 2 in front of a Cl, or as a subscript after the Cl The ratio mark even if no charges are shown (penalised in 1st mark) IGNORE any inner electrons ALLOW max 1 for incorrect symbols if charges and ratio are correct		

Question Number	Acceptable Answers	Reject	Mark
18(d)(iv)	MP1	References to Al / Mg or Cl atoms / chlorine	(3)
	Al (cat)ion polarises chloride /		
	distorts chloride electron cloud		
	OR		
	Al (cat)ion has a greater polarising		
	ability (than Mg ion)		
	OR		
	Chloride ion/anion in AlCl_{3} is		
	distorted (by aluminium (ion)) (1)		
	MP2		
	EITHER		
	Electrons are partly shared (by AI		
	and Cl) OR		
	(In AlCl_{3}) orbital overlap occurs		
	(aluminium and chloride) ions are		
	not totally discrete/separate (1)		
	IGNORE		
	fully shared electrons		
	References to ionic size and charge		
	References to atomic radius		
	Ionic bond strength/stability		
	Polarisation of AlCl_{3} / polarisation power of AlCl_{3}		
	MP3		
	Melting/boiling temperature (of		
	AlCl_{3}) is lower (than that of MgCl_{2})		
	OR		
	$\left(\mathrm{AlCl}_{3}\right)$ sublimes / Molten salt/ AlCl_{3} does not conduct electricity /		
	cannot be electrolysed		
	ALLOW		
	BH cycle / experimental LE value		
	greater / more negative / more		
	exothermic than theoretical LE		
	value of AlCl_{3}		
	$\left(\mathrm{AlCl}_{3}\right)$ forms a dimer		
	(AlCl_{3}) forms dative		
	covalent/coordinate bonds (with electron pair donors)		
	Magnesium chloride solution is a		
	better conductor than aluminium		
	chloride solution (1)		

(Total for question 18 = 19 marks)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a)}$			(1)
	ALLOW Any orientation IGNORE bond angles, displayed formulae		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (b)}$	Combustion reaction is exothermic/ evolves heat/ releases energy (1)		(2)
	This keeps catalyst hot (1)		
IGNORE Activation energy			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c) (i)}$	The change $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ releases energy/ is exothermic / forms hydrogen bonds OR Extra heat is evolved when $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ forms ALLOW reverse argument weaker intermolecular forces between $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ than $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$	(1)	

Question Number	Acceptable Answers	Reject	Mark
19(c)(ii)	Look at final answer		(3)
	Correct answer scores 3		
	$\begin{aligned} & ((4 x-393.5+5 x-285.8)-(-134.5)) \\ & =-2868.5 /-2869 /-2870 /-2900 \\ & (\mathrm{~kJ} \mathrm{~mol} \end{aligned}$	-3000	
	(3)		
	ALLOW		
	Correct value with incorrect sign and /or incorrect unit		
	(2)		
	Correct expression written but calculator error for final value (2)		
	Incorrect answer with correct Hess cycle		
	$\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+61 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+$		
	$61 / 2 \mathrm{O}_{2}(\mathrm{~g}) \text { Elements } / 4 \mathrm{C}(\mathrm{~s})+5 \mathrm{H}_{2}(\mathrm{~g})+$		
	(1)		
	IGNORE SF except 1		
	NOTE		
	$-544.8\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ scores 1 mark (misses x 5 and x 4 in expression)		
	-2648.5 (kJ mol ${ }^{-1}$) scores 2 marks (uses -241.8 instead of -285.8)		
	Answers worth (2) because of one error:		
	$(+) 279.5$		
	-10.5		
	-3137.5		
	-1725.3		

Question Number	Acceptable Answers	Reject	Mark
19(c)(iii)	ALLOW TE from 19c(ii) First mark - amount of 2methylpropane (=15/58) $=0.2586206 / 0.259(\mathrm{~mol})$ (1) Second mark - energy produced $=(0.2586206 \times 2868.5)$ $=741.85345(\mathrm{~kJ})$ OR (0.259×2868.5) $=742.94(\mathrm{~kJ})$ (1) IGNORE SF except 1 SF - sign. ALLOW TE from first to second mark Use of rounded values of amount or ΔH for example use of 0.26 mol gives 750 (kJ). Final answers may need to be checked individually.	0.3 / 0.25	(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (d) (i)}$	$\Delta H=(-11280-(-8410))$ $=-2870\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	IGNORE units	$\mathbf{1)}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 d (i i)}$	Bond enthalpies / bond energies (of any or all of C-C, C-H, O=O, C=O, H-O)	Bond enthalpies of compounds	(1)
	ALLOW Enthalpy change of bond breaking Enthalpy changes of atomization (of any or all of methylpropane / carbon dioxide/water/oxygen) change of: Formation Combustion Specific heat capacity		
(Total for question 19 = 11 marks)			

Question Number	Acceptable Answers	Reject	Mark
20(a)	 Electrons in $\mathrm{C}=\mathrm{C}$ double bond within a hydrocarbon (1) Rest of molecule correct (1) ALLOW All dots / crosses		(2)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b) (i)}$	$\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{5} \mathrm{H}_{12}$ ALLOW Other types of correct formulae IGNORE state symbols even if incorrect any suggested conditions	H_{2}	(1)

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	 OR $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)-$ One Methyl side-group on a carbon chain (1) 4-Carbon backbone complete with hydrogens and continuation bonds (1) IGNORE Square brackets and n ALLOW (1) mark for both correct repeat units drawn separately for poly(ethene) and poly(propene) if no other marks awarded	Just poly(propene) Just poly(ethene)	(2)

Question Number	Acceptable Answers	Reject	Mark
20(c)	MP1 Potassium manganate((VII)) / potassium permanganate / KMnO (1) MP2 depends on mention of manganate $\mathrm{H}_{2} \mathrm{SO}_{4}$ ALLOW Acidified / acid / H^{+} (1) MP3 depends on mention of manganate (Colour change from) purple / pink (to) colourless (1) OR MP2 depends on mention of manganate $\mathrm{KOH} / \mathrm{NaOH}$ (1) MP3 depends on mention of manganate and alkali Colour change from purple to green/brown (ppt) (1)	Incorrect oxidation numbers HCl To brown Just 'alkaline'	(3)

Question Number	Acceptable Answers	Reject	Mark
20(d)	Observation: (colour change from) brown/ yellow/orange/red-brown (to) colourless (1) EITHER (1) 1-bromopropan-2-ol / 1-bromo-2-hydroxypropane (1) OR (1) 2-bromopropan-1-ol / 2-bromo-1-hydroxypropane (1) ALLOW Skeletal or structural formula for $2^{\text {nd }}$ mark TE in third mark for "1,2-dibromopropane" if this has been drawn, but this compound does not score the second mark	Red Bond directly from C to H in OH if displayed	(3)

Questio n Number	Acceptable Answers	Reject	Mark
20(e)	MP1 Dipole on $\mathrm{H}-\mathrm{Br}$ (1) MP2 Curly arrow from double bond to H and curly arrow from $\mathrm{H}-\mathrm{Br}$ bond to Br or just beyond (1) MP3 Correct carbocation intermediate (1) MP4 Arrow from anywhere on Br^{-}to $\mathrm{C}+$ and product (1) ALLOW formation of 1-bromopropane following from + on C1 if other arrows correct (max 3) A fully correct electrophilic addition mechanism using Br_{2} scores (2) marks Electrophilic addition mechanism using Br_{2} with 1 error scores (1) mark	C+ with 4 bonds drawn $\mathrm{Br} \bullet$	(4)

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (f)}$	MP1 (Pi electrons in) double bond repel electrons in Br - $\mathrm{Br} /$ bromine		(2)
	ALLOW Region of high electron density repels, etc (1)	MP2 EITHER Produces a dipole / produces $\delta+$ (and $\delta-) /$ polarises molecule	bromide / partial positive bromide
ALLOW Diagram showing the dipole	OR So electron pair (from C=C) / electrons can be accepted (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (g)}$	MP1 EITHER Production of both polymers will increase (as shale gas supplies more ethane and propane) OR (Relatively) more poly(ethene) than poly(propene) will be produced because there is more ethane in the shale gas (than propane) (1)	(2)	
	MP2 EITHER More ethene is produced than propene (by cracking alkanes in shale gas) OR Ethene can be produced from ethane/propane/butane/pentane OR Propene can be produced from propane/butane/pentane/fewer alkanes OR Propene cannot be produced from ethane (1)		

(Total for question 20 = 19 marks)
TOTAL FOR PAPER $=\mathbf{8 0}$ MARKS

