

Mark Scheme (Results)

Summer 2016

Pearson Edexcel International Advanced Level in Chemistry (WCH01) Paper 01 The Core Principles of Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016 Publications Code 46662_MS* All the material in this publication is copyright © Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

WCH01 June 2016 Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	В		(1)
Question Number	Correct Answer	Reject	Mark
2	С		(1)

Question Number	Correct Answer	Reject	Mark
3	A		(1)

Question Number	Correct Answer	Reject	Mark
4	A		(1)

Question Number	Correct Answer	Reject	Mark
5	С		(1)

Question Number	Correct Answer	Reject	Mark
6	В		(1)

Question Number	Correct Answer	Reject	Mark
7	D		(1)

Question Number	Correct Answer	Reject	Mark
8a	D		(1)

Question Number	Correct Answer	Reject	Mark
8b	D		(1)

Question Number	Correct Answer	Reject	Mark
8c	В		(1)

Question Number	Correct Answer	Reject	Mark
8d	С		(1)

Question Number	Correct Answer	Reject	Mark
8e	С		(1)

Question Number	Correct Answer	Reject	Mark
9	С		(1)

Question Number	Correct Answer	Reject	Mark
10	В		(1)

Question Number	Correct Answer	Reject	Mark
11	D		(1)

Question Number	Correct Answer	Reject	Mark
12	С		(1)

Question Number	Correct Answer	Reject	Mark
13	D		(1)

Question Number	Correct Answer	Reject	Mark
14	A		(1)

Question Number	Correct Answer	Reject	Mark
15	В		(1)

Question Number	Correct Answer	Reject	Mark
16	В		(1)

(Total for Section A = 20 marks)

Section B

Question Number	Acceptable Answers	Reject	Mark
17(a)	Atoms of the same element / atomic number / proton number and different mass number /	Molecule for atom	(1)
	neutron number / nucleon number ALLOW Elements / they / isotopes have the same atomic numberetc Atomic mass for mass number IGNORE references to electrons	Atomic mass number	

Question Number	Acceptable Answers	Reject	Mark
17(b)(i)	High energy/fast moving/high speed electrons hit atoms/molecules/elements/sample (and knock electrons out.)		(1)
	ALLOW (Use) an electron gun/beam/stream		
	Bombard with electrons		
	IGNORE References to ionizing / forming (positive) ions Just an equation, e.g., $M(g) \rightarrow M^+(g)$ + e		

Question Number	Acceptable Answers	Reject	Mark
17(b)(ii)	$\begin{array}{l} M(g) + e^{-} \rightarrow M^{+}(g) + 2e^{-} \\ ALLOW \\ M(g) \rightarrow M^{+}(g) + e^{-} \\ M(g) - e^{-} \rightarrow M^{+}(g) \end{array}$		(1)
	ALLOW Use of Mg ⁺ (g) for M ⁺ (g) IGNORE		
	omission of minus sign on electron state symbol on electron Rewritten M(g) on LHS Leading '1' before any charges e.g. M(g) ¹⁺		

Question Number	Acceptable Answers	Reject	Mark
	(With an) electric field / (negatively) charged plates (with slits in them) ALLOW Oppositely/alternatively charged plates IGNORE	(Electro)magnetic field Positively charged plates Charged slits	(1)
	Electric plates		

Question Number	Acceptable Answers	Reject	Mark
17(b)(iv)	Curved path showing lighter ion deflected more	Straight line	(1)
	Path	Lines originating from the magnet	
	ALLOW dotted line additional parallel path entering the magnet with correct deflection	Lines deflected before passing through the magnet	
	lines that do not reach but would extrapolate to detector on left of original beam	Lines which would not hit the detector	

Question Number	Acceptable Answers	Reject	Mark
17(c)	((28x92.17) + (29x4.71) + (30x3.12)) (1) 100 (= 28.1095) = 28.11 (1) Final answer without working scores (2) IGNORE units	Answers not to 4sf (second mark)	(2)

Question Number	Acceptable Answers	Reject	Mark
17(d)	MP2 cannot be awarded without any attempt to do a calculation for MP1		(3)
	MP1 (6x12 + 12x1.0079) = 84.0948 OR (5x12 + 8x1.0079 + 15.9949) = 84.0581 (1) MP2 So mass matches for C ₅ H ₈ O / doesn't match for C ₆ H ₁₂ (1)		
	OR MP1 Mass of 12H =12.0948 (1) MP2 Remaining mass = 71.9633, so not exactly equal to 6C (1)		
	OR MP1 Mass of $H_8O = 24.0581$ (1) MP2 Remaining mass = 60.0000 so exactly equal to 5C (1)	Just use of C = 12 without indicating as an assumption	
	MP3 Assumption: (one atom of) C=12(.0000) / has mass (exactly) 12 ALLOW Other isotopes of H and/or O are not present	ussumption	
	(1)		
	IGNORE Any units in calculations		

Question Number	Acceptable Answers	Reject	Mark
Number 17(e)	Small atomic radius / small atom ALLOW Diffuses easily Not (significantly) present in air/ low density / less dense than air Non-toxic IGNORE Low mass / lighter than air /	Small molecule	(1)
	light(weight) / references to inertness or non-flammability / availability / gas at room temperature / monatomic / no isotopes / answers relating to cost		

(Total for question 17 = 11 marks)

Question Number	Acceptable Answers	Reject	Mark
18(a)	(1s ²) 2s ² 2p ⁶ 3s ² 3p ¹ ALLOW Upper case, subscripts, P orbitals divided into x, y, z eg: 2s ² 2p _x ² 2p _y ² 2p _z ² 3s ² 3p _x ¹ IGNORE 1s ² if written again		(1)

Question Number	Acceptable Answe	rs	Reject	Mark
18(b)	protons	13		(1)
	neutrons	14		
	electrons	10		
	All three numbers IGNORE any work			

Question Number	Acceptab	le Answer	S		Reject	Mark
18(c)(i)	First IE 578 3p 3p/ 3p _x a (1) 2p/ 2p _x / (1) ALLOW p s s p	2p _y / 2p _z		Fourth IE 11578 2p		(2)
	3p ¹ for (2) m	3s ² narks	3s ¹	2p ⁶		

Question Number	Acceptable Answers	Reject	Mark
18(c)(ii)	$ \begin{array}{l} AI^+ (g) \to AI^{2+}(g) + e^- \\ OR \\ AI^+ (g) - e^- \to AI^{2+}(g) \end{array} $		(2)
	MP1 Balanced equation (1)		
	MP2 (g) symbols This is dependent on the equation involving aluminium even if electrons/charges are wrong (1)		
	NOTE If correct equation for a second ionization using the wrong symbol is given with correct state symbols allow (1) max		
	IGNORE lack of minus sign on electron / any state symbols for electron		

Question Number	Acceptable Answers	Reject	Mark
*18(c)(iii)	MP1 Second electron is closer (to nucleus) / electron is removed from a positive ion / 1+ ion is smaller than atom ALLOW More protons than electrons (in ion) Effective nuclear charge greater (in ion) (1) MP2 So greater attraction between electron and nucleus/protons OR More energy required to overcome attraction between electron and nucleus OR Less repulsion between electrons (1) IGNORE References to high charge-density in 1+ ion References to shielding / last electron shell stability	Just 'more energy required to remove electron' / 'harder to remove electron' NOTE "Second I.E. loses 2 electrons" - scores (0) overall 1+ ion has more protons than atom - scores (0) overall	(2)

Question Number	Acceptable Answers	Reject	Mark
Question Number *18(c)(iv)	MP1 for similarity between first and second electrons lost; 1 st and 2 nd (electrons are removed) from the same/3rd shell OR First (electron lost from) 3p (subshell/orbital) and second (electron lost from) 3s (subshell/orbital) (1) MP2 for difference between third and fourth electrons lost; Third (electron lost from) 3s (subshell/orbital) and fourth (electron lost from) 2p (subshell/orbital) OR	Reject	Mark (2)
	OR (compared with the 3 rd electron) the 4 th electron is removed from a shell closer to the nucleus / from a new/lower/different shell / from a		
	shell with less shielding		
	 (1) If no other mark awarded, allow (1) for: three electrons in the 3rd shell of Al and the fourth electron is removed from 2nd shell IGNORE References to charges on ion 		

Question Number	•	Reject	Mark
18(d)(i)	$\begin{array}{c} (\textcircled{P} & (\textcircled{P}) & (\textcircled{P})$	Protons / nucleus / atoms	(2)

Question Number	Acceptable Answers	Reject	Mark
18(d)(ii)	(Mg) lower (melting temperature) because (no mark for this alone) and any two from:	"Mg has a higher melting point" scores (0) overall	(2)
	(Mg) ion charge is less / (Mg) ion (radius) is larg er / (Mg) ion charge density is less / (any mention of) Mg ²⁺ and Al ³⁺ (1)	Atomic radius (of Mg) is larger	
	(Mg) few er delocalised/free electrons / small er sea of electrons / one less electron donated (1)		
	(Mg) weak er (forces of) attraction between (+ve) ions and (delocalised/free electrons / sea of electrons) / (Mg) ions are held less tightly to the sea of electrons / metallic bond is weaker (1)	References to ionic bonds / covalent bonds / intermolecular forces score (0) overall	

Question Number	Acceptable Answers	Reject	Mark
18(d)(iii)	Image: Contract dot and cross diagrams with 2+ on Mg and - / 1- / -1 charge on (both if drawn) Cl (1) ALLOW No electrons or 8 electrons on outer shell of Mg Dots or crosses or other valid symbols for electrons Paired or unpaired electrons Diagrams without brackets Second mark Ratio of one Mg to two Cl (ions) (1) ALLOW Number of Cl shown as 2 in front of a Cl, or as a subscript after the Cl The ratio mark even if no charges are shown (penalised in 1 st mark) IGNORE any inner electrons ALLOW max 1 for incorrect symbols if charges and ratio are correct	Covalent bonding – scores (0) overall	(2)

Question	Acceptable Answers	Reject	Mark
Number 18(d)(iv)	MP1		(3)
13(U)(IV)	Al (cat)ion polarises chloride / distorts chloride electron cloud OR Al (cat)ion has a greater polarising ability (than Mg ion) OR Chloride ion/anion in AlCl ₃ is distorted (by aluminium (ion)) (1)	References to Al / Mg or Cl atoms / chlorine	(3)
	MP2 EITHER Electrons are partly shared (by Al and Cl) OR (In AlCl ₃) orbital overlap occurs OR (aluminium and chloride) ions are not totally discrete/separate (1) IGNORE fully shared electrons References to ionic size and charge References to atomic radius Ionic bond strength/stability Polarisation of AlCl ₃ / polarisation power of AlCl ₃		
	MP3 Melting/boiling temperature (of AlCl ₃) is lower (than that of MgCl ₂) OR (AlCl ₃) sublimes / Molten salt/AlCl ₃ does not conduct electricity / cannot be electrolysed		
	ALLOW BH cycle / experimental LE value greater / more negative / more exothermic than theoretical LE value of AlCl ₃ (AlCl ₃) forms a dimer (AlCl ₃) forms dative covalent/coordinate bonds (with electron pair donors) Magnesium chloride solution is a better conductor than aluminium chloride solution (1)		

(Total for question 18 = 19 marks)

Question Number	Acceptable Answers	Reject	Mark
19(a)	ALLOW Any orientation IGNORE bond angles, displayed formulae		(1)

Question Number	Acceptable Answers	Reject	Mark
19(b)	Combustion reaction is exothermic/ evolves heat/ releases energy (1) This keeps catalyst hot (1) IGNORE Activation energy		(2)

Question Number	Acceptable Answers	Reject	Mark
19(c)(i)	The change $H_2O(g) \rightarrow H_2O(I)$ releases energy/ is exothermic / forms hydrogen bonds OR Extra heat is evolved when $H_2O(I)$ forms ALLOW reverse argument weaker intermolecular forces between $H_2O(g)$ than $H_2O(I)$		(1)

Question Number	Acceptable Answers	Reject	Mark
19(c)(ii)	Look at final answer Correct answer scores 3		(3)
	((4x-393.5 + 5x - 285.8) - (-134.5)) = -2868.5/ -2869/ -2870 / -2900 (kJ mol ⁻¹)	-3000	
	 (3) ALLOW Correct value with incorrect sign and /or incorrect unit (2) 		
	Correct expression written but calculator error for final value (2)		
	Incorrect answer with correct Hess cycle		
	$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$		
	Elements / $4C(s) + 5H_2(g) + 6\frac{1}{2}O_2(g)$		
	(1)		
	IGNORE SF except 1		
	NOTE -544.8 (kJ mol ⁻¹) scores 1 mark (misses x5 and x4 in expression)		
	-2648.5 (kJ mol ⁻¹) scores 2 marks (uses -241.8 instead of -285.8)		
	Answers worth (2) because of one error: (+)279.5 10.5 3137.5 1688.0 1725.3		

Question Number	Acceptable Answers	Reject	Mark
19(c)(iii)	ALLOW TE from 19c(ii) First mark – amount of 2- methylpropane (=15/ 58) = 0.2586206/ 0.259 (mol) (1)	0.3 / 0.25	(2)
	Second mark - energy produced = (0.2586206 x 2868.5)		
	=741.85345 (kJ) OR (0.259 x 2868.5) =742.94 (kJ) (1)		
	IGNORE SF except 1 SF – sign.		
	ALLOW TE from first to second mark		
	Use of rounded values of amount or ΔH for example use of 0.26 mol gives 750 (kJ). Final answers may need to be checked individually.		

Question Number	Acceptable Answers	Reject	Mark
19(d)(i)	$\Delta H = (-11280 - (-8410))$ = -2870 (kJ mol ⁻¹) IGNORE units		(1)

Question Number	Acceptable Answers	Reject	Mark
19d(ii)	Bond enthalpies / bond energies (of any or all of C-C, C-H, O=O, C=O, H-O) ALLOW Enthalpy change of bond breaking Enthalpy changes of atomization (of any or all of methylpropane / carbon dioxide/water/oxygen)	Bond enthalpies of compounds Enthalpy change of: Formation Combustion Specific heat capacity	(1)

(Total for question 19 = 11 marks)

20(a) $\begin{array}{c} H & H & H \\ & \overset{\times}{}^{\circ}C_{x} \overset{\times}{x} \overset{\times}{C} & \times \overset{\times}{x} \overset{\circ}{C} \overset{\times}{}^{*}H \\ & \overset{\times}{x} \overset{\times}{x} \overset{\times}{c} & \overset{\times}{x} \overset{\circ}{c} \overset{\times}{}^{*}H \end{array} $ (2)	Question Number	Acceptable Answers	Reject	Mark
It H Electrons in C=C double bond within a hydrocarbon (1) Rest of molecule correct (1) ALLOW All dots / crosses		$ \begin{array}{c} \overset{*}{} & \overset{*}{} \\ \overset{*}{} & \overset{*}{} & \overset{*}{} & \overset{*}{} & \overset{*}{} & \overset{*}{} \\ & \overset{*}{} & \overset{*}{} & \overset{*}{} & \overset{*}{} & \overset{*}{} \\ \end{array} $ Electrons in C=C double bond within a hydrocarbon (1) (1) Rest of molecule correct (1) ALLOW		(2)

Question Number	Acceptable Answers	Reject	Mark
20(b)(i)	$C_{10}H_{22} \rightarrow C_{2}H_{4} + C_{3}H_{6} + C_{5}H_{12}$ ALLOW Other types of correct formulae IGNORE state symbols even if incorrect any suggested conditions	H ₂	(1)

Question Number	Acceptable Answers	Reject	Mark
20(b)(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(2)
	One Methyl side-group on a carbon chain (1)	Just poly(propene)	
	4-Carbon backbone complete with hydrogens and continuation bonds(1)	Just poly(ethene)	
	IGNORE Square brackets and n		
	ALLOW (1) mark for both correct repeat units drawn separately for poly(ethene) and poly(propene) if no other marks awarded		

Question Number	Acceptable Answers	Reject	Mark
20(c)	MP1 Potassium manganate((VII)) / potassium permanganate / KMnO ₄ (1) MP2 depends on mention of manganate H ₂ SO ₄	Incorrect oxidation numbers	(3)
	ALLOW Acidified / acid / H ⁺ (1) MP3 depends on mention of manganate (Colour change from) purple / pink (to) colourless (1) OR MP2 depends on mention of manganate KOH / NaOH (1) MP3 depends on mention of manganate and alkali Colour change from purple to green/brown (ppt) (1)	HCI To brown Just `alkaline'	

Question	Acceptable Answers	Reject	Mark
Number 20(d)	Observation: (colour change from) brown/ yellow/orange/red-brown (to) colourless (1)	Red	(3)
	EITHER H-C-C-C-H BF 0-H H	Bond directly from C to H in OH if displayed	
	 (1) 1-bromopropan-2-ol / 1-bromo-2-hydroxypropane (1) 		
	OR		
	H Br H H-C-C-H H-C-L-H H H		
	 (1) 2-bromopropan-1-ol / 2-bromo-1-hydroxypropane (1) 		
	ALLOW		
	Skeletal or structural formula for 2 nd mark		
	TE in third mark for "1,2-dibromopropane" if this has been drawn, but this compound does not score the second mark		

Questio	Acceptable Answers	Reject	Mark
n Number			
20(e)	$\begin{array}{c} H & H & H \\ C = C - C - H \end{array} \rightarrow H - C - C - C - H + Br^{-1}$ $H & H & H \\ H & H & H \\ H & H \\ H & H \\ H & H \end{array}$		(4)
	$\begin{array}{cccc} H & H & H & H & H & H & H & H & H & H $		
	MP1 Dipole on H-Br (1)		
	MP2 Curly arrow from double bond to H and curly arrow from H—Br bond to Br or just beyond (1)	C+ with 4 bonds drawn Br∙	
	MP3 Correct carbocation intermediate (1)		
	MP4 Arrow from anywhere on Br ⁻ to C+ and product (1)		
	ALLOW formation of 1-bromopropane following from + on C1 if other arrows correct (max 3)		
	A fully correct electrophilic addition mechanism using Br ₂ scores (2) marks Electrophilic addition mechanism using Br ₂ with 1 error scores (1) mark		

Question Number	Acceptable Answers	Reject	Mark
20(f)	MP1 (Pi electrons in) double bond repel electrons in Br-Br / bromine ALLOW Region of high electron density repels, etc (1)		(2)
	MP2 EITHER Produces a dipole / produces δ + (and δ -) / polarises molecule	brom ide / partial positive brom ide	
	Diagram showing the dipole OR So electron pair (from C=C) / electrons can be accepted (1)		

Question	Acceptable Answers	Reject	Mark
Number			
20(g)	MP1 EITHER Production of both polymers will increase (as shale gas supplies more ethane and propane) OR (Relatively) more poly(ethene) than poly(propene) will be produced because there is more ethane in the shale gas (than propane) (1)		(2)
	MP2 EITHER More ethene is produced than propene (by cracking alkanes in shale gas) OR Ethene can be produced from ethane/propane/butane/pentane OR Propene can be produced from propane/butane/pentane/fewer alkanes OR Propene cannot be produced from ethane (1)		

(Total for question 20 = 19 marks)

TOTAL FOR PAPER = 80 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R 0RL